Math 31 - Homework 7

Due Friday, August 17

1. Let R be a ring, and suppose that I and J are ideals in R. Prove that $I \cap J$ is an ideal in R.
2. Let R be a commutative ring, and fix $a \in R$. Define the annihilator of a to be the set

$$
\operatorname{Ann}(a)=\{x \in R: x a=0\} .
$$

Prove that $\operatorname{Ann}(a)$ is an ideal of R.
3. Let R be a commutative ring. An element $a \in R$ is said to be nilpotent if there is a positive integer n such that $a^{n}=0$. The set

$$
\operatorname{Nil}(R)=\{a \in R: a \text { is nilpotent }\}
$$

is called the nilradical of R. Prove that the nilradical is an ideal of R. [Hint: You may need to use the fact that the usual binomial theorem holds in a commutative ring. That is, if $a, b \in R$ and $n \in \mathbb{Z}^{+}$, then

$$
(a+b)^{n}=\sum_{k=0}^{n} a^{n-k} b^{k}
$$

This should help with checking that $\operatorname{Nil}(R)$ is closed under addition.]
4. Let R and S be two rings with identity, and let 1_{R} and 1_{S} denote the multiplicative identities of R and S, respectively. Let $\varphi: R \rightarrow S$ be a nonzero ring homomorphism. (That is, φ does not map every element of R to 0 .)
(a) Show that if $\varphi\left(1_{R}\right) \neq 1_{S}$, then $\varphi\left(1_{R}\right)$ must be a zero divisor in S. Conclude that if S is an integral domain, then $\varphi\left(1_{R}\right)=1_{S}$.
(b) Prove that if $\varphi\left(1_{R}\right)=1_{S}$ and $u \in R$ is a unit, then $\varphi(u)$ is a unit in S and

$$
\varphi\left(u^{-1}\right)=\varphi(u)^{-1} .
$$

5. Let R be a commutative ring with identity.
(a) Fix $\alpha \in R$. Define the evaluation homomorphism at α to be the map $\mathrm{ev}_{\alpha}: R[x] \rightarrow R$ given by: if $p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ is in $R[x]$, then

$$
\mathrm{ev}_{\alpha}(p)=a_{n} \alpha^{n}+\cdots+a_{1} \alpha+a_{0} .
$$

Show that ev_{α} is indeed a ring homomorphism.
(b) Determine the kernel of ev_{α}.
(c) Suppose now that $R[x]$ is a PID. Show that the kernel of ev_{α} is a maximal ideal, and conclude that R must be a field in this case.
6. Determine whether each of the following polynomials is irreducible over the given field.
(a) $3 x^{4}+5 x^{3}+50 x+15$ over \mathbb{Q}.
(b) $x^{2}+7$ over \mathbb{Q}.
(c) $x^{2}+7$ over \mathbb{C}.

