Math 31 - Homework 7 Due Friday, August 17

1. Let R be a ring, and suppose that I and J are ideals in R. Prove that $I \cap J$ is an ideal in R.

2. Let R be a commutative ring, and fix $a \in R$. Define the **annihilator** of a to be the set

$$Ann(a) = \{x \in R : xa = 0\}.$$

Prove that Ann(a) is an ideal of R.

3. Let R be a commutative ring. An element $a \in R$ is said to be **nilpotent** if there is a positive integer n such that $a^n = 0$. The set

$$Nil(R) = \{a \in R : a \text{ is nilpotent}\}\$$

is called the **nilradical** of R. Prove that the nilradical is an ideal of R. [Hint: You may need to use the fact that the usual binomial theorem holds in a commutative ring. That is, if $a, b \in R$ and $n \in \mathbb{Z}^+$, then

$$(a+b)^n = \sum_{k=0}^n a^{n-k} b^k.$$

This should help with checking that Nil(R) is closed under addition.]

4. Let R and S be two rings with identity, and let 1_R and 1_S denote the multiplicative identities of R and S, respectively. Let $\varphi : R \to S$ be a nonzero ring homomorphism. (That is, φ does not map every element of R to 0.)

- (a) Show that if $\varphi(1_R) \neq 1_S$, then $\varphi(1_R)$ must be a zero divisor in S. Conclude that if S is an integral domain, then $\varphi(1_R) = 1_S$.
- (b) Prove that if $\varphi(1_R) = 1_S$ and $u \in R$ is a unit, then $\varphi(u)$ is a unit in S and

$$\varphi(u^{-1}) = \varphi(u)^{-1}.$$

5. Let R be a commutative ring with identity.

(a) Fix $\alpha \in R$. Define the **evaluation homomorphism at** α to be the map $ev_{\alpha} : R[x] \to R$ given by: if $p(x) = a_n x^n + \cdots + a_1 x + a_0$ is in R[x], then

$$\operatorname{ev}_{\alpha}(p) = a_n \alpha^n + \dots + a_1 \alpha + a_0.$$

Show that ev_{α} is indeed a ring homomorphism.

- (b) Determine the kernel of ev_{α} .
- (c) Suppose now that R[x] is a PID. Show that the kernel of ev_{α} is a maximal ideal, and conclude that R must be a field in this case.

- 6. Determine whether each of the following polynomials is irreducible over the given field.
 - (a) $3x^4 + 5x^3 + 50x + 15$ over \mathbb{Q} .
 - (b) $x^2 + 7$ over \mathbb{Q} .
 - (c) $x^2 + 7$ over \mathbb{C} .